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Abstract—The description of the beam-waveguide in terms of
ray optics and wave optics is combined to describe the performance
of waveguides with predetermined bending radii. We require that
the beam in a bend of the beam-waveguide departs from its axis no
more than an amount equal to half its spot size. This requirement is
sufficient to determine uniquely the spacing and focal length of the
lenses.

It turns out that it is advantageous to space the lenses close to
four times their focal length, in order to enable the waveguide to di-
rect a light beam around sharp bends. However, transverse random
displacements of the lenses also cause the beam to depart from the
axis of the guide. This departure becomes very large if the lens spac-
ing approaches four times the focal length. A guide which is designed
to negotiate sharp bends is more seriously affected by random dis-
placements of the lenses. Further analysis of imperfections and ex-
perimental work will be required before a final design choice can be
made.

INTRODUCTION
THE INTEREST in light as a communications

carrier has been revived with the invention of the

laser. However, a light communications system
becomes feasible only if a low-loss transmission medium
can be designed. One possible solution to this problem is
Goubau's beam-waveguide [1]. It consists of a sequence
of positive lenses which are arranged in a straight line
and keep the light beam from spreading apart by re-
focusing it periodically. The power loss due to diffrac-
tion at the lens apertures can be kept extremely low.

It is also well known [2] that the beam-waveguide is
capable of leading the light beam around bends, Fig. 1.
However, the light beam will follow an oscillatory tra-
jectory after leaving the bend unless one takes special
measures to avoid these beam undulations {2]. Every
deviation from perfect straightness will, in general,
cause the light beam to oscillate around the waveguide
axis. If the amplitudes of these beam oscillations be-
come too large the beam moves close to the edge of lenses
and begins to suffer diffraction losses, or even moves
completely off the lenses and is lost. Therefore, it is very
important to design a beam waveguide so that the light
beam remains as close to the guide axis as possible.

The present paper discusses the design of intentional
bends of the beam-waveguide and gives relations be-
tween the waveguide parameters such as spacing L and
focal length f of the lenses and the radius of curvature
of the guide axis.

The maximum amount by which the light beam devi-
ates from the guide axis depends on the radius of curva-
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Fig. 1.

Beam-waveguide bend.

ture of the beam-waveguide. For any given radius of
curvature one can influence the maximum deviation of
the light ray from the guide axis by changing the spac-
ing and focal length of the lenses. However, spacing and
focal length also influences the width of the beam on the
lenses. The light beam is not a mathematically thin line
but has a width which is described by the spot size of
the beam on the lenses.

Generally, sharp bends can be tolerated if the spot
size is small [3]. A small spot size on the other hand re-
quires closely spaced lenses and makes the beam-wave-
guide more expensive. It appears that both the radius
of curvature of the sharpest bend as well as the spot size
of the lowest order waveguide mode will be factors which
determine the design of spacing and focal length of the
lenses. If one requires that the beam shall deviate from
the axis by no more than half its width then the spacing
and focal length of the lenses are uniquely determined.
We present curves of focal length and lens spacing as
functions of the radius of curvature of the beam-wave-
guide for given spot sizes.

It is also possible to express the radius of curvature,
which results in a beam deviation equal to half its spot
size, as a function of the lens spacing and focal length
only, regardless of spot size. Curves of radius of curva-
ture and spot size as functions of the ratio of lens spac-
ing to focal length are presented.

Random transverse displacements of the lenses also
cause the light beam to depart from the guide axis [5],
[6]. Again allowing the departure to equal half the spot
size enables us to determine the acceptable rms dis-
placement of the lenses. The latter goes to zero as the
lens spacing approaches four times the focal length of
the lenses. An actual design of a beam-waveguide will
have to compromise between the requirement of leading
a beam around a bend and keeping the position toler-
ances within reasonable limits.
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L AND f As FUNCTIONS OF R AND w

The spot size w of the lowest order mode of the beam-
waveguide is given by [4]
< 2)\f>2
T

wt= ———— - 1)
¥y
L
W=radius of the spot on the lens at which the in-
tensity of the beam has dropped to ¢2 of its
maximum value.
J=focal length of the lenses.
L =lens spacing.
A={ree space wavelength of the light.

If the light ray is displaced from the axis of the
straight beam-waveguide it follows an oscillating trajec-
tory given by [2]

7, = A cos (nd + ¢);

7. 18 the position of the ray at the nth lens measured
from its center, 4 and ¢ are amplitude and phase of the
oscillation and # [defined in (3b)] determines the period
of oscillation.

If we assume that the light ray travels on-axis of the
straight section of the beam-waveguide, it begins to
depart from the axis as it enters a waveguide bend.

The deviation 7, of the light beam on a tapered bend
(Fig. 1) measured at the position of the nth lens is given
by (23a) of [2]:

28L%

Tn = o sin20{(n — 2)(1 + cos 6)

2
+ " [sin@ — sin8(n — 1)]} . @
This equation holds for 2=n<iN+2.

The length of the bend is given by

D= NIL, (3a)
with N being the number of lenses on the bend and 6 is
defined by

cosf=1——

2f

) T L
sin § = 1/_/‘/1 -
f 4f
while § is the angle through which the bend leads.

The minimum radius of curvature R of the tapered
bend is

(3b)

or

30)

D
R=—-" 4)
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The curly bracket of (2) contains two terms. One
term grows proportionally with # and reaches its maxi-
mum at #=3N+42 at the point of lowest radius of
curvature, (The lens number n was chosen so that
n=3N-+2 designates the center of the bend.) The other
term oscillates with #. 7, reaches its largest possible
value rmax if #=3N-+2 and sin §(n—1) = —1;

26013
D?sin?¢

Tmax =

{£ (1 -+ cos 0) + —2— [1 + sin 9]} (5)
2L 6 '

Using (3b) and (3c) we find that

1+cos€_ﬁ’ ©)

sin? @ L
If D/L>>1 and if sin § is not too close to zero the first
term in the bracket of (5) dominates.
In that case {7]

2Lf  Lf
D R

Tmax =

This is the same value by which the beam departs
from the axis of a circular bend if it is launched to tra-
verse it without oscillations [2].

If we require 7n.=w, then (7) and (1) allow us to
express L and f in terms of w and R.

— = ®)
2

and

L R w A A 1/ 2\¢
—=2_ = ————<~ ) (9)
A A A w R 7w \w

From (9) and (8) follows

L 4 R ( 2 )‘“’

f - w \ 71w/

As R decreases L/f approaches 4 which, according to

(3c), means that sin § approaches 0. The approximation

Jeading to (8) and (10) does not hold in that limit, We

have to consider another approximation for the region
L/f=4.

As L/f approaches 4 the angle 6 approaches . Since

we want to study the relationship between L, f, R, and
w near that region we take

(10)

L = 4f(1 — ¢ (11)
and write (5) by taking (1 + sin 8)/60 =1/7;
L 4512 412 6406f°

Froax = _f f ~ L ) . (12)

R w D% R wD%
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Equation (1) becomes

2)\ 2 f£2
wt = (——) r . (13)
T €
Eliminating € from (12) and (13) vields
42 16mout
Traax = —— . (14)
R AD?

Taking 7m.. = allows us to write a second order equa-
tion for f
476 Rt

it f—— =0
S VDﬂf 4

with the solution

Tw?t R /8)\2R\?
- Eely
2602R w \ 7w

where use was made of (4).

The equations corresponding to (8) and (9) but which
are valid in the vicinity of L=4f are from (11), (13),
and (15);

f 7r<w>4>\
A 2\\/ R

(15)

j 3N\2/ AM\"/ R\?
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A A T w? A
It has to be pointed out that the approximation (7),
seemingly breaks down in yet another region as §—0.
Equation (7) was obtained from (5) by neglecting the
second term in the curly bracket. This term apparently
grows larger as §—0. However, it can be shown that (7)
is still a good approximation as long as D is much larger

than the period of oscillation of the light beam.
As #—0 we can write with the help of (3¢)

i L
smf)z()z/‘/——-
/

In order to keep the beam-waveguide effective, the
limit ~/Z/f—0 has to be taken by allowing Lf to remain
finite. This requitement stems from the fact that the
argument of sin #(z —1) has to remain finite in order to
ensure an oscillating light beam [2].

nlL
O = — - nl = —
L vV Lf

nl is the length coordinate measured along the wave-
guide axis and A=27+/Lf is the oscillation period of the
beam. The light waveguide remains effective as long as
it forces the beam to follow an oscillating trajectory.

(16)

(17)

(18)

(19)
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This justifies the requirement that A shall remain finite.
6—0 can, therefore, only be achieved by letting L—0
and f— o,

Equation (5) can now be written

26L _
Pinax = »4 {D+2(L + L}

- (20

Since L—0 and as long as D>>A =27+/Lf we can write

D R @0

This proves that no new approximation is required to
cover the region 8—0 but that (8), (9), and (10) are still
valid.

DiscussioN

Figure 2 shows L/X\ and f/A as functions of R/\ for
w/A=500. This figure allows us to find the values of L
and f which ensure that the light departs from the axis
by an amount equal to w for any given radius of curva-
ture R, Once the values of L and f are found, R can be
allowed to become larger than the value originally
chosen in the diagram because for larger values of K the
beam will depart even less from the axis while for
smaller R it will depart more. This explains why the
diagram gives no values for L and f for radii R larger
than certain limits (the point when L =0 and f= =)
because the beam will not depart as much as w from the
axis no matter how we choose L and f as long as the
requirement D>>A is not violated.

It is important to keep in mind that w is constant for
this graph. All corresponding values of L and f (those
belonging to the same value R of the abscissa) belong to
the beam-waveguide with the same spot size. The fact
that w* is a quadratic function of f [1] explains why we
find two values of f for each value of L or in other words
why the curve for L shows a maximum. This maximum
falls at the point L/f=2, that is for confocal spacing of
the lenses.

The figure shows an interesting fact. It is not the con-
focal beam-waveguide which allows us to negotiate the
sharpest bends but rather one for which L/f approaches
the value four even though the waveguide is unstable for
L/f=4 and is unable to guide a beam for L/f>4. Yet,
it approaches L/f =4 to guide beams around the sharp-
est beunds.

Figures 3, 4, and 5 show L/\, f/\, and L/f as func-
tions of R/\ for different values of w/A.

The point L=0, f= « moves toward smaller values
of R/\ as w/\ decreases. This means that the critical
value of R/\, where the beam can depart from the axis
by as much as half the spot size, decreases as w/A
decreases. It is also apparent that the confocal wave-
guide (maximum of L/f in Fig. 3) tolerates sharper
bends if w/\ is decreased.
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Fig. 2. Lens spacing L, focal length f and L/f as functions of the

radius of curvature R of the beam-waveguide for §=w/2 and
w/A=7500. (w is the spot size, A the light wavelength and & the
angle of the bend.)
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Fig. 3. Lens spacing L divided by light wavelength X as a function
of the normalized radius of curvature R for various values of the
spot size w. (§=7/2.)
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Fig. 4. Focal length f as function of R for various

values of w/\. (8=w/2.)
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Fig. 5. Ratio of lens spacing to focal length as a function

of R/A for various values of w/\. (6==/2.)

However, if we pick a certain value of R/L in Fig. 3,
say R/A=108, the graph shows that the values of L/A
increase with increasing spot size. The reason for this
behavior is explained if we recall that as the spot size
increases the beam is also allowed to depart further
from the axis. If the bending radius is too small, (e.g.,
R/N=10%), large values of L/\ can be achieved only by
reducing the spot size.

RADIUS OF CURVATURE AND SpOT SIiZE AS
Funcrions or L/f

Since each two of the quantities R, w, L, and f can be
expressed as functions of the two others it is possible to
express R and w as functions of L and f.

Again requiring #m.= = we get from (1) and (7)

G 2@ -
ey O
<%> | %: <%) | {4 iL_ 1} s (23)
L

Equation (22) does not hold in the limit L—4f; we have
to use (12) and (4) to derive:

DESONOE
‘{1+ /1+ ]‘ (24)
e

with w/N of (23). Figure 6 shows (\/L)*2R/\ and
(A/L)Y%w/N\ as functions of L/f. This figure shows
clearly that R decreases for increasing values of L/f.
Only in the immediate vicinity of L/f—4 does R rise
again to reach R= » at L/f=4. This part of the plot
is the contribution of (24). The exact functional de-
pendence of (A\/L)¥*R/\ in the immediate vicinity of

w L
4— =
i
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Fig. 6. Normalized radius of curvature R, spot size w and rms lens
displacement ¢ as functions of L/f. (#=number of lenses.)

L/f—4 depends on the angle § and on L/N. However,
the rise of the function is so steep that the details of the
function in the range 3.95 <L /f <4 cannot be displayed
in Fig. 6.

RanDpoM LENs DISPLACEMENTS

The discussion of the bent beam-waveguide so far
came to the result that in order to negotiate sharp bends
L/f should be chosen close to four but not exactly equal
to four. We want to conclude this discussion with a
word of caution. So far we have disregarded random
displacements of the lenses. However, random trans-
verse displacements of the lenses cause an rms deviation
of the light beam from its ideal trajectory [5], [6]-
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Hirano and Fukatsu [6] have shown that the rms
deviation of the light beam for a large number n of
lenses is given by

o _ V2
’\/<(7’n — <7'n>)2> == U\/ﬂ ‘——_::f:—:

J

42— 1

L

(25)

with ¢ being the rms value of the transverse lens dis-
placement and (r,) the ensemble average.
If we again require

V(i — () = w
we obtain from (23) and (25)

This function is also plotted in Fig. 6. We see that as
R decreases with increasing values of L/f so does o. The
tolerance requirements become increasingly stringent
as L/f approaches four. In practice the tolerances will
set a limit to how close L/f should approach the value
four.
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